SLVS053D - FEBRUARY 1988 - REVISED NOVEMBER 2003

- Complete PWM Power-Control Function
- Totem-Pole Outputs for 200-mA Sink or Source Current
- Output Control Selects Parallel or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply, Trimmed to 1% Tolerance
- On-Board Output Current-Limiting Protection
- Undervoltage Lockout for Low-V_{CC}
 Conditions
- Separate Power and Signal Grounds

D OR N PACKAGE (TOP VIEW) ERROR J 1IN+ 16 2IN+ LERROR AMP 1 Ì 1IN− [FEEDBACK **1** 3 14 REF DTC | 4 13 OUTPUT CTRL 12 VCC CT $\prod 5$ 11 VC RT [SIGNAL GND 7 10 POWER GND OUT1 9 OUT2

description/ordering information

The TL598 incorporates all the functions required in the construction of pulse-width-modulated (PWM) controlled systems on a single chip. Designed primarily for power-supply control, the TL598 provides the systems engineer with the flexibility to tailor the power-supply control circuits to a specific application.

The TL598 contains two error amplifiers, an internal oscillator (externally adjustable), a dead-time control (DTC) comparator, a pulse-steering flip-flop, a 5-V precision reference, undervoltage lockout control, and output control circuits. Two totem-pole outputs provide exceptional rise- and fall-time performance for power FET control. The outputs share a common source supply and common power ground terminals, which allow system designers to eliminate errors caused by high current-induced voltage drops and common-mode noise.

The error amplifier has a common-mode voltage range of 0 V to V_{CC} – 2 V. The DTC comparator has a fixed offset that prevents overlap of the outputs during push-pull operation. A synchronous multiple supply operation can be achieved by connecting RT to the reference output and providing a sawtooth input to CT.

The TL598 device provides an output control function to select either push-pull or parallel operation. Circuit architecture prevents either output from being pulsed twice during push-pull operation. The output frequency

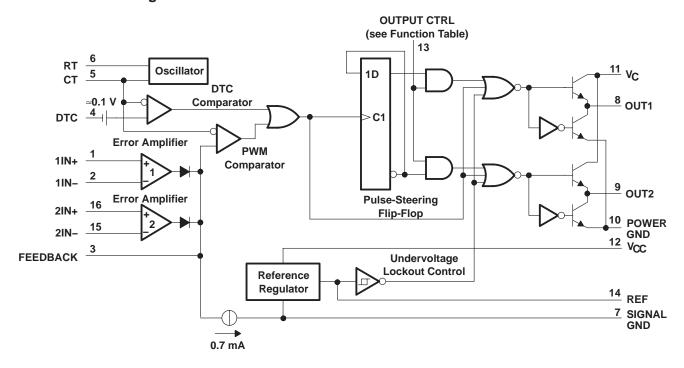
for push-pull applications is one-half the oscillator frequency $\left(f_{\text{O}} = \frac{1}{2 \; \text{RT CT}}\right)$. For single-ended applications:

$$f_0 = \frac{1}{RT CT}$$

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP (N)	Tube of 25	TL598CN	TL598CN
0°C to 70°C	SOIC (D)	Tube of 40	TL598CD	TI 500C
	SOIC (D)	Reel of 2500	TL598CDR	TL598C

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

INPUT/OUTPUT CTRL	OUTPUT FUNCTION
$V_I = GND$	Single-ended or parallel output
V _I = REF	Normal push-pull operation

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Amplifier input voltage, V _I	
Collector voltage	
Output current (each output), sink or source, IO	
Package thermal impedance, θ_{JA} (see Notes 2 and 3): D	
. 0, (,	package 67°C/W
Operating virtual junction temperature, T.J	. •
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the signal ground terminal.
 - 2. Maximum power dissipation is a function of T_J(max), θ_{JA} , and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
Vcc	Supply voltage	7	40	V
VI	Amplifier input voltage	0	V _{CC} -2	V
IO	Collector voltage		40	V
IIL	Output current (each output), sink or source		200	mA
	Current into feedback terminal		0.3	mA
CT	Timing capacitor	0.00047	10	μF
R _T	Timing resistor	1.8	500	kΩ
fosc	Oscillator frequency	1	300	kHz
TA	Operating free-air temperature	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$ (unless otherwise noted)

reference section (see Note 4)

PARAMETER	TEST CONDITIONS†		MIN	TYP‡	MAX	UNIT
Output voltage (REE)	1 4 4	T _A = 25°C	4.95	5	5.05	
Output voltage (REF)	$I_O = 1 \text{ mA}$	T _A = full range	4.9		5.1	٧
Input regulation	V _{CC} = 7 V to 40 V	T _A = 25°C		2	25	mV
0	I _O = 1 mA to 10 mA	T _A = 25°C		1	15	\/
Output regulation		T _A = full range			50	mV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$			2	10	mV/V
Short-circuit output current§	REF = 0 V		-10	-48	·	mA

[†] Full range is 0°C to 70°C.

NOTE 4: Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

oscillator section, $C_T = 0.001 \,\mu\text{F}$, $R_T = 12 \,\text{k}\Omega$ (see Figure 1) (see Note 4)

	1 (300 1 iguilo 1) (300 11310 1)			
PARAMETER	TEST CONDITIONS†	MIN TYP‡	MAX	UNIT
Frequency		100		kHz
Standard deviation of frequency¶	All values of V _{CC} , C _T , R _T , T _A constant	100		Hz/kHz
Frequency change with voltage	$V_{CC} = 7 \text{ V to } 40 \text{ V}, \qquad T_A = 25^{\circ}\text{C}$	1	10	Hz/kHz
Frequency change with temperature#	$\Delta T_A = \text{full range}$	70	120	Hz/kHz
	ΔT_A = full range, C_T = 0.01 μF	50	80	П2/КП2

[†] Full range is 0°C to 70°C.

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \overline{X})^2}{N-1}}$$

Effects of temperature on external R_T and C_T are not taken into account.

NOTE 4. Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

[‡] All typical values, except for parameter changes with temperature, are at T_A = 25°C.

[§] Duration of the short circuit should not exceed one second.

 $[\]ddagger$ All typical values, except for parameter changes with temperature, are at $T_A = 25$ °C.

 $[\]P$ Standard deviation is a measure of the statistical distribution about the mean, as derived from the formula:

SLVS053D - FEBRUARY 1988 - REVISED NOVEMBER 2003

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (unless otherwise noted) (continued)

error amplifier section (see Note 4)

PARAMETER	TEST	CONDITIONS		MIN	TYP [†]	MAX	UNIT
Input offset voltage	FEEDBACK = 2.5 V				2	10	mV
Input offset current	FEEDBACK = 2.5 V				25	250	nA
Input bias current	FEEDBACK = 2.5 V				0.2	1	μΑ
Common-mode input voltage range	V _{CC} = 7 V to 40 V			0 to V _{CC} -2			V
Open-loop voltage amplification	ΔV_O (FEEDBACK) = 3 V,	VO (FEEDBACK	() = 0.5 V to 3.5 V	70	95		dB
Unity-gain bandwidth					800		kHz
Common-mode rejection ratio	V _{CC} = 40 V,	$\Delta V_{IC} = 6.5 V$,	T _A = 25°C	65	80		dB
Output sink current (FEEDBACK)	FEEDBACK = 0.5 V			0.3	0.7		mA
Output source current (FEEDBACK)	FEEDBACK = 3.5 V			-2			mA
Phase margin at unity gain	FEEDBACK = 0.5 V to 3.5	V,	R _L = 2 kΩ		65°		
Supply-voltage rejection ratio	FEEDBACK = 2.5 V,	$\Delta V_{CC} = 33 \text{ V},$	$R_L = 2 k\Omega$		100		dB

[†] All typical values, except for parameter changes with temperature, are at $T_A = 25^{\circ}C$.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (unless otherwise noted)

undervoltage lockout section (see Note 4)

PARAMETER	TEST CONDITIONS‡	MIN	MAX	UNIT	
T	T _A = 25°C	4	6		
Threshold voltage	$\Delta T_A = \text{full range}$	3.5	6.9	V	
Lhatarais	T _A = 25°C	100		m)/	
Hysteresis§	T _A = full range	50		mV	

Full range is 0°C to 70°C.

output section (see Note 4)

PARAMETER	TEST CO	ONDITIONS	MIN	MAX	UNIT
High level output voltage	V _{CC} = 15 V, V _C = 15 V	$I_0 = -200 \text{ mA}$	12		.,
High-level output voltage	$V_{C} = 15 \text{ V}$	$I_0 = -20 \text{ mA}$	13		V
Level and automotive trans	V _{CC} = 15 V, V _C = 15 V	I _O = 200 mA	2		
Low-level output voltage	V _C = 15 V	I _O = 20 mA		0.4	٧
Output control input ourront	$\forall_i = \forall_{ref}$			3.5	mA
Output-control input current	$V_I = V_{ref}$ $V_I = 0.4 V$			100	μΑ

NOTE 4. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

NOTE 4. Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

^{\$} Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

NOTE 4. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

SLVS053D - FEBRUARY 1988 - REVISED NOVEMBER 2003

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$ (unless otherwise noted) (continued)

dead-time control section (see Figure 1) (see Note 4)

PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Input bias current (DTC)	V _I = 0 to 5.25 V		-2	-10	μΑ
Maximum duty cycle, each output	DTC = 0 V	0.45			
Input threshold voltage (DTC)	Zero duty cycle		3	3.3	V
Imput tilleshold voltage (DTC)	Maximum duty cycle	-2 -10 0.45	V		

 $^{^\}dagger$ All typical values, except for parameter changes with temperature, are at $T_A = 25^\circ C$.

pwm comparator section (see Note 4)

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Input threshold voltage (FEEDBACK)	DTC = 0 V		3.75	4.5	V
Input sink current (FEEDBACK)	V(FEEDBACK) = 0.5 V	0.3	0.7		mA

 $^{^{\}dagger}$ All typical values, except for parameter changes with temperature, are at $T_A = 25^{\circ}C$.

NOTE Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

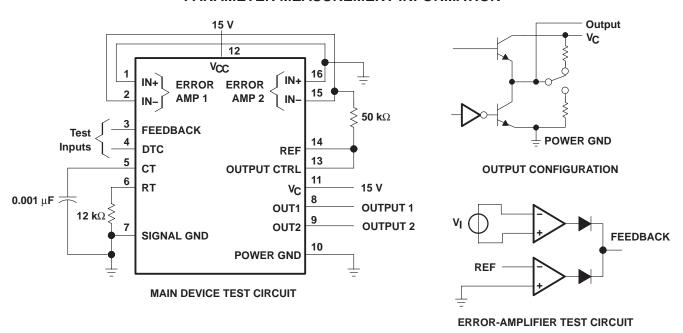
total device (see Figure 1) (see Note 4)

PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
Ot a seller a second of	$RT = V_{ref}$,	V _{CC} = 15 V		15	21	4
Standby supply current	All other inputs and outputs open	V _{CC} = 40 V		20	21 26	mA
Average supply current	DTC = 2 V			15		mA

 $^{^\}dagger$ All typical values, except for parameter changes with temperature, are at T_A = 25°C.

switching characteristics, $T_A = 25^{\circ}C$ (see Note 4)

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Output-voltage rise time	CL = 1500 pF,	VC = 15 V,	VCC = 15 V,		60	150	20
Output-voltage fall time	See Figure 2				35	75	ns


NOTE 4. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

NOTE 4. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

NOTE 4. Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuits

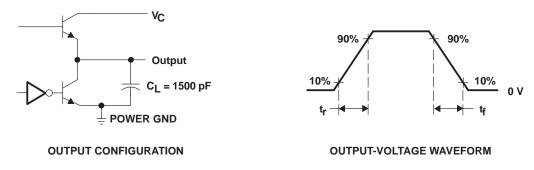
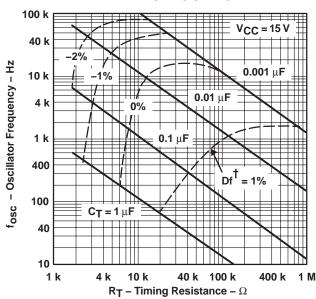



Figure 2. Switching Output Configuration and Voltage Waveform

TYPICAL CHARACTERISTICS

OSCILLATOR FREQUENCY AND FREQUENCY VARIATION TO VS TIMING RESISTANCE

[†] Frequency variation (Δf) is the change in predicted oscillator frequency that occurs over the full temperature range.

Figure 3

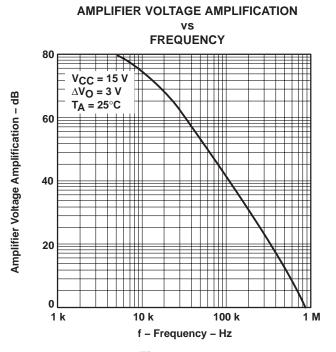
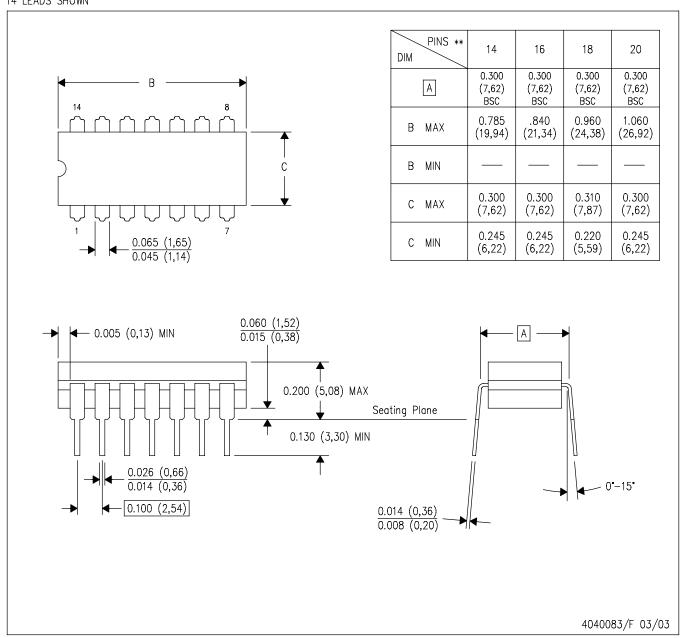
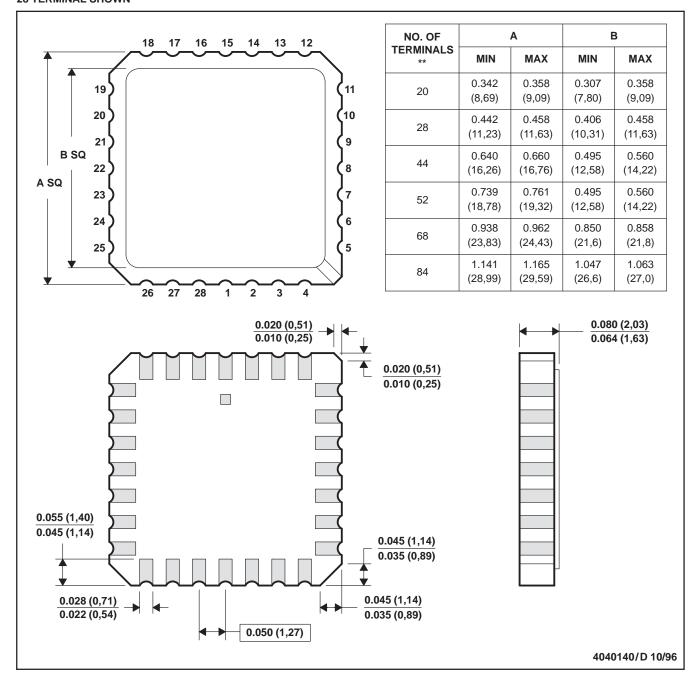



Figure 4

14 LEADS SHOWN


NOTES:

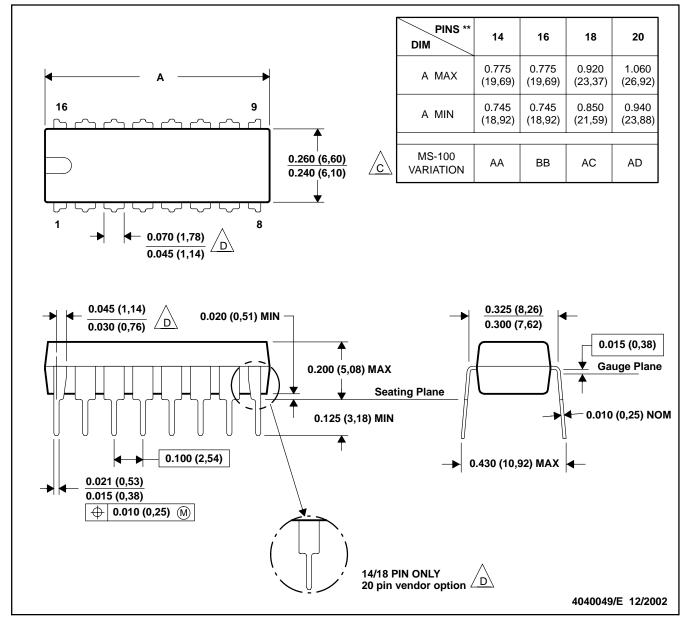
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

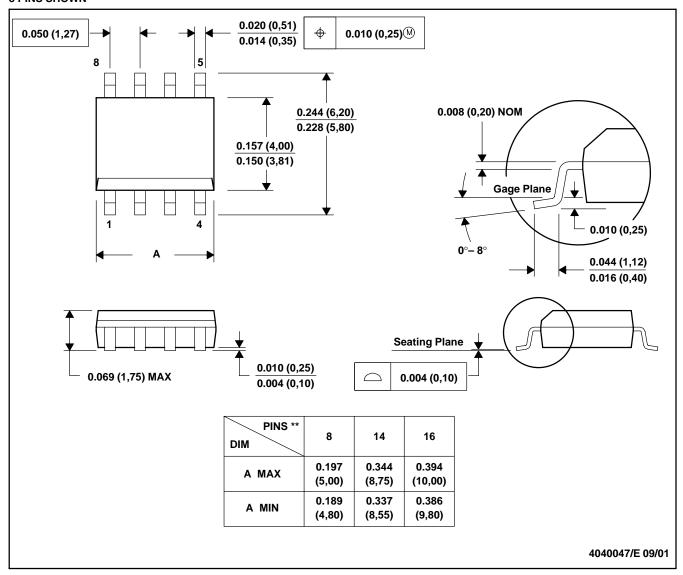
N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com		Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated